#### Introduction to Quantum Mechanics

by David J. Griffiths

#### Introduction to Electrodynamics

by David J. Griffiths

#### Introduction to the Quantum Theory

by David Park

Starting with an introduction that ventures beyond classical physics, the first part examines the physical content of the wave function; general principles; physics in one dimension; hermitian operators, symmetry, and angular momentum; and systems in two and three dimensions. Additional topics include approximate methods of calculation; the theory of scattering; spin and isospin; questions of physical meaning; electromagnetic radiation; systems containing identical particles; and classical dynamics and Feynman’s construction.

Focusing on applications, the second part explores the theory of alpha decay; electrons in a periodic lattice; the hydrogen spectrum; the helium atom; interatomic forces; the neutron-proton interaction; and the quark model of baryons.

#### Principles of Quantum Mechanics

by R. Shankar

Reviews from the First Edition:

“An excellent text … The postulates of quantum mechanics and the mathematical underpinnings are discussed in a clear, succinct manner.” (American Scientist)

“No matter how gently one introduces students to the concept of Dirac’s bras and kets, many are turned off. Shankar attacks the problem head-on in the first chapter, and in a very informal style suggests that there is nothing to be frightened of.” (Physics Bulletin)

Reviews of the Second Edition:

“This massive text of 700 and odd pages has indeed an excellent get-up, is very verbal and expressive, and has extensively worked out calculational details—all just right for a first course. The style is conversational, more like a corridor talk or lecture notes, though arranged as a text. … It would be particularly useful to beginning students and those in allied areas like quantum chemistry.” (Mathematical Reviews)

R. Shankar has introduced major additions and updated key presentations in this second edition of Principles of Quantum Mechanics. New features of this innovative text include an entirely rewritten mathematical introduction, a discussion of Time-reversal invariance, and extensive coverage of a variety of path integrals and their applications. Additional highlights include:

– Clear, accessible treatment of underlying mathematics

– A review of Newtonian, Lagrangian, and Hamiltonian mechanics

– Student understanding of quantum theory is enhanced by separate treatment of mathematical theorems and physical postulates

– Unsurpassed coverage of path integrals and their relevance in contemporary physics

The requisite text for advanced undergraduate- and graduate-level students, Principles of Quantum Mechanics, Second Edition is fully referenced and is supported by many exercises and solutions. The book’s self-contained chapters also make it suitable for independent study as well as for courses in applied disciplines.