#### Using R for Introductory Statistics, Second Edition

by John Verzani

The second edition of a bestselling textbook, **Using R for Introductory Statistics **guides students through the basics of R, helping them overcome the sometimes steep learning curve. The author does this by breaking the material down into small, task-oriented steps. The second edition maintains the features that made the first edition so popular, while updating data, examples, and changes to R in line with the current version.

** **

See What’s New in the Second Edition:

- Increased emphasis on more idiomatic R provides a grounding in the functionality of base R.
- Discussions of the use of RStudio helps new R users avoid as many pitfalls as possible.
- Use of knitr package makes code easier to read and therefore easier to reason about.
- Additional information on computer-intensive approaches motivates the traditional approach.
- Updated examples and data make the information current and topical.

The book has an accompanying package, UsingR, available from CRAN, R’s repository of user-contributed packages. The package contains the data sets mentioned in the text (data(package=”UsingR”)), answers to selected problems (answers()), a few demonstrations (demo()), the errata (errata()), and sample code from the text.

The topics of this text line up closely with traditional teaching progression; however, the book also highlights computer-intensive approaches to motivate the more traditional approach. The authors emphasize realistic data and examples and rely on visualization techniques to gather insight. They introduce statistics and R seamlessly, giving students the tools they need to use R and the information they need to navigate the sometimes complex world of statistical computing.

#### An Introduction to Statistical Learning

by Gareth James, Daniela Witten, Trevor Hastie, Robert Tibshirani

**An Introduction to Statistical Learning** provides an accessible overview of the field of statistical learning, an essential toolset for making sense of the vast and complex data sets that have emerged in fields ranging from biology to finance to marketing to astrophysics in the past twenty years. This book presents some of the most important modeling and prediction techniques, along with relevant applications. Topics include linear regression, classification, resampling methods, shrinkage approaches, tree-based methods, support vector machines, clustering, and more. Color graphics and real-world examples are used to illustrate the methods presented. Since the goal of this textbook is to facilitate the use of these statistical learning techniques by practitioners in science, industry, and other fields, each chapter contains a tutorial on implementing the analyses and methods presented in R, an extremely popular open source statistical software platform.

Two of the authors co-wrote The Elements of Statistical Learning (Hastie, Tibshirani and Friedman, 2nd edition 2009), a popular reference book for statistics and machine learning researchers. **An Introduction to Statistical Learning** covers many of the same topics, but at a level accessible to a much broader audience. This book is targeted at statisticians and non-statisticians alike who wish to use cutting-edge statistical learning techniques to analyze their data. The text assumes only a previous course in linear regression and no knowledge of matrix algebra.

#### Introductory Statistics

by Barbara Illowsky, Susan Dean

Introductory Statistics is designed for the one-semester, introduction to statistics course and is geared toward students majoring in fields other than math or engineering. This text assumes students have been exposed to intermediate algebra, and it focuses on the applications of statistical knowledge rather than the theory behind it.

The foundation of this textbook is Collaborative Statistics, by Barbara Illowsky and Susan Dean. Additional topics, examples, and ample opportunities for practice have been added to each chapter. The development choices for this textbook were made with the guidance of many faculty members who are deeply involved in teaching this course. These choices led to innovations in art, terminology, and practical applications, all with a goal of increasing relevance and accessibility for students. We strove to make the discipline meaningful, so that students can draw from it a working knowledge that will enrich their future studies and help them make sense of the world around them.

Coverage and Scope

Chapter 1 Sampling and Data

Chapter 2 Descriptive Statistics

Chapter 3 Probability Topics

Chapter 4 Discrete Random Variables

Chapter 5 Continuous Random Variables

Chapter 6 The Normal Distribution

Chapter 7 The Central Limit Theorem

Chapter 8 Confidence Intervals

Chapter 9 Hypothesis Testing with One Sample

Chapter 10 Hypothesis Testing with Two Samples

Chapter 11 The Chi-Square Distribution

Chapter 12 Linear Regression and Correlation

Chapter 13 F Distribution and One-Way ANOVA

#### An Introduction to Statistics with Python

by Thomas Haslwanter

This textbook provides an introduction to the free software Python and its use for statistical data analysis. It covers common statistical tests for continuous, discrete and categorical data, as well as linear regression analysis and topics from survival analysis and Bayesian statistics. Working code and data for Python solutions for each test, together with easy-to-follow Python examples, can be reproduced by the reader and reinforce their immediate understanding of the topic. With recent advances in the Python ecosystem, Python has become a popular language for scientific computing, offering a powerful environment for statistical data analysis and an interesting alternative to R. The book is intended for master and PhD students, mainly from the life and medical sciences, with a basic knowledge of statistics. As it also provides some statistics background, the book can be used by anyone who wants to perform a statistical data analysis.