Kafka The Definitive Guide Pdf Download

Kafka: The Definitive Guide
by Neha Narkhede, Gwen Shapira, Todd Palino

Every enterprise application creates data, whether it’s log messages, metrics, user activity, outgoing messages, or something else. And how to move all of this data becomes nearly as important as the data itself. If you’re an application architect, developer, or production engineer new to Apache Kafka, this practical guide shows you how to use this open source streaming platform to handle real-time data feeds.

Engineers from Confluent and LinkedIn who are responsible for developing Kafka explain how to deploy production Kafka clusters, write reliable event-driven microservices, and build scalable stream-processing applications with this platform. Through detailed examples, you’ll learn Kafka’s design principles, reliability guarantees, key APIs, and architecture details, including the replication protocol, the controller, and the storage layer.

  • Understand publish-subscribe messaging and how it fits in the big data ecosystem.
  • Explore Kafka producers and consumers for writing and reading messages
  • Understand Kafka patterns and use-case requirements to ensure reliable data delivery
  • Get best practices for building data pipelines and applications with Kafka
  • Manage Kafka in production, and learn to perform monitoring, tuning, and maintenance tasks
  • Learn the most critical metrics among Kafka’s operational measurements
  • Explore how Kafka’s stream delivery capabilities make it a perfect source for stream processing systems

Kafka: The Definitive Guide
by Neha Narkhede, Gwen Shapira, Todd Palino

Every enterprise application creates data, whether it’s log messages, metrics, user activity, outgoing messages, or something else. And how to move all of this data becomes nearly as important as the data itself. If you’re an application architect, developer, or production engineer new to Apache Kafka, this practical guide shows you how to use this open source streaming platform to handle real-time data feeds.

Engineers from Confluent and LinkedIn who are responsible for developing Kafka explain how to deploy production Kafka clusters, write reliable event-driven microservices, and build scalable stream-processing applications with this platform. Through detailed examples, you’ll learn Kafka’s design principles, reliability guarantees, key APIs, and architecture details, including the replication protocol, the controller, and the storage layer.

  • Understand publish-subscribe messaging and how it fits in the big data ecosystem.
  • Explore Kafka producers and consumers for writing and reading messages
  • Understand Kafka patterns and use-case requirements to ensure reliable data delivery
  • Get best practices for building data pipelines and applications with Kafka
  • Manage Kafka in production, and learn to perform monitoring, tuning, and maintenance tasks
  • Learn the most critical metrics among Kafka’s operational measurements
  • Explore how Kafka’s stream delivery capabilities make it a perfect source for stream processing systems

Kafka
by Neha Narkhede, Gwen Shapira, Todd Palino

Every enterprise application creates data, whether it’s log messages, metrics, user activity, outgoing messages, or something else. And how to move all of this data becomes nearly as important as the data itself. If you’re an application architect, developer, or production engineer new to Apache Kafka, this practical guide shows you how to use this open source streaming platform to handle real-time data feeds.

Engineers from Confluent and LinkedIn who are responsible for developing Kafka explain how to deploy production Kafka clusters, write reliable event-driven microservices, and build scalable stream-processing applications with this platform. Through detailed examples, you’ll learn Kafka’s design principles, reliability guarantees, key APIs, and architecture details, including the replication protocol, the controller, and the storage layer.

  • Understand publish-subscribe messaging and how it fits in the big data ecosystem.
  • Explore Kafka producers and consumers for writing and reading messages
  • Understand Kafka patterns and use-case requirements to ensure reliable data delivery
  • Get best practices for building data pipelines and applications with Kafka
  • Manage Kafka in production, and learn to perform monitoring, tuning, and maintenance tasks
  • Learn the most critical metrics among Kafka’s operational measurements
  • Explore how Kafka’s stream delivery capabilities make it a perfect source for stream processing systems

Cassandra: The Definitive Guide
by Jeff Carpenter, Eben Hewitt

Imagine what you could do if scalability wasn’t a problem. With this hands-on guide, you’ll learn how the Cassandra database management system handles hundreds of terabytes of data while remaining highly available across multiple data centers. This expanded second edition—updated for Cassandra 3.0—provides the technical details and practical examples you need to put this database to work in a production environment.

Authors Jeff Carpenter and Eben Hewitt demonstrate the advantages of Cassandra’s non-relational design, with special attention to data modeling. If you’re a developer, DBA, or application architect looking to solve a database scaling issue or future-proof your application, this guide helps you harness Cassandra’s speed and flexibility.

  • Understand Cassandra’s distributed and decentralized structure
  • Use the Cassandra Query Language (CQL) and cqlsh—the CQL shell
  • Create a working data model and compare it with an equivalent relational model
  • Develop sample applications using client drivers for languages including Java, Python, and Node.js
  • Explore cluster topology and learn how nodes exchange data
  • Maintain a high level of performance in your cluster
  • Deploy Cassandra on site, in the Cloud, or with Docker
  • Integrate Cassandra with Spark, Hadoop, Elasticsearch, Solr, and Lucene

Spark: The Definitive Guide
by Bill Chambers, Matei Zaharia

Learn how to use, deploy, and maintain Apache Spark with this comprehensive guide, written by the creators of the open-source cluster-computing framework. With an emphasis on improvements and new features in Spark 2.0, authors Bill Chambers and Matei Zaharia break down Spark topics into distinct sections, each with unique goals.

You’ll explore the basic operations and common functions of Spark’s structured APIs, as well as Structured Streaming, a new high-level API for building end-to-end streaming applications. Developers and system administrators will learn the fundamentals of monitoring, tuning, and debugging Spark, and explore machine learning techniques and scenarios for employing MLlib, Spark’s scalable machine-learning library.

  • Get a gentle overview of big data and Spark
  • Learn about DataFrames, SQL, and Datasets—Spark’s core APIs—through worked examples
  • Dive into Spark’s low-level APIs, RDDs, and execution of SQL and DataFrames
  • Understand how Spark runs on a cluster
  • Debug, monitor, and tune Spark clusters and applications
  • Learn the power of Structured Streaming, Spark’s stream-processing engine
  • Learn how you can apply MLlib to a variety of problems, including classification or recommendation

Post Other :